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ABSTRACT: Hydrodynamic lubrication characteristics of asymmetric rollers by power-law fluids for a heavily 
loaded rigid line contact system are studied in this work choosing the incompressible lubricant is to be 
varied with hydrodynamic pressure. The important governing equations like continuity and momentum are 
solved analytically under usual boundary conditions and the obtained a numerical solution using MATLAB.  
The velocity profiles of power-law fluids are presented and some significant changes in pressure, load, and 
traction are observed. The results are in good agreement with the previous findings. 
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I. INTRODUCTION 

Hydrodynamic theory of lubrication is one of the 
important parts of Tribology. The theoretical study of 
hydrodynamic lubrication of roller bearings as received 
attention of many researchers because these are 
amenable to easy mathematical analysis. These 
bearings are widely used in industries for the purpose of 
supporting transverse loads [1]. 
Further, in hydrodynamic lubrication different types of 
lubricants are used to sustain the load of the system. 
The Newtonian lubricant is the simplest one which 
presence the linear relationship between shear stress 
and shear strain rate with a great no of lubricant 
molecule. However the non- Newtonian characteristics 
have also been invariably served in various lubrication 
problems [2].  In most of the classical problem lubricant 
is assumed to be Newtonian. However since the 
lubricant is subjected to extremely high pressure and 
shear stresses, heavily loaded rolling element bearings 
which act for a very short time, the Newtonian behavior 
of the lubricant ceases to exist [3]. Besides many 
lubricants contain high molecular weight polymers also 
make them strongly non- Newtonian. Hence, the effect 
of non- Newtonian lubricant is to be incorporated along 
with the effects of hydrodynamic pressure. 
On the line of non- Newtonian fluids, Power-law 
lubricant model has got attention in the recent years 
because of its simplicity and potential to describe many 
lubricants such as silicon fluids, polymer solutions [4]. In 
fact this power law model characterizes to different 
types of non – Newtonian fluids i.e., visco-elastic and 
dilatants plus Newtonian as well when index of the 
power law model is unity [5]. Dien and Elrod (1983) 
examined the same non-Newtonian fluid model and 
developed a new numerical technique based on 
perturbation expansion for velocity under coquette 
dominated flow condition [6]. Sinha et al., (1983) 
examined a lubrication problem with squeezing motion 
for non-Newtonian power law lubricant [7].  

Prasad et al., (1987) extended the same result adding 
thermal effects assuming the consistency of the 
lubricant to be varied with pressure and the mean 
temperature [8]. Jang et al., (2008) studied the EHL line 
contact problem and emphasized the fact that the non-
Newtonian character of the lubricant must be taken in to 
account in order to predict the film thickness [9]. Prasad 
et al., (2012) studied hydrodynamic lubrication of 
asymmetric rollers including thermal effects considering 
the consistency of the lubricant is to be varied with 
hydrodynamic pressure and mean film temperature 
under usual boundary conditions [10]. Sajja and Prasad 
(2015) dealt with the qualitative analysis of 
hydrodynamic lubrication of asymmetric rollers with non-
Newtonian incompressible power law lubricants 
assuming consistency of lubricant to be varied with 
hydrodynamic pressure and mean film temperature 
under isothermal and adiabatic boundaries [11]. Revathi 
et al., (2019) studied the similar problem considering 
Bingham plastic fluid for a heavily loaded rigid system in 
which consistency of the lubricant is assumed to vary 
with hydrodynamic pressure under usual boundary 
conditions neglecting thermal effects [12].   
The main aim of the present paper is to study the 
lubrication characteristics of asymmetric roller bearings 
under usual boundary conditions for a heavily loaded 
rigid line contact system by incompressible power-law 
fluids assuming the consistency of lubricant to be varied 
with hydrodynamic pressure. 

II. MATHEMATICAL MODEL 

Consider the problem of hydrodynamic lubrication of 
asymmetric rollers for a heavily loaded rigid line contact 
system in such a way that the two rollers having same 
radius and moving with different velocities lubricated by 
incompressible power- law fluids as mentioned in the 
Fig. 1. 
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Fig. 1.  Lubrications of asymmetric rollers. 

Problem formulation: Consider the following 
momentum and continuity equations for power-law fluid 
model [10] 
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Where 
21

UandU  are velocities of the rolling 

cylinders as shown in Fig. (1). 
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Integration of (2) for the regions:  1xx −<<∞−
 
and
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gradients (as given in Fig. (1)) and the velocity gradient 
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Volume Flux: The volume flux Q for the region: 

1xx −<<∞−  is obtained by ∫
−

=
h
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where the thickness of film H at 1xx −= is considered 

to be  
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Reynolds equation: The Pressure Reynolds equating 
is obtained by equating the flux (8) and (9),  
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Dimensionless Equations: Applying the above 
mentioned dimensionless scheme, the velocity Eqns. (6) 
and (7), pressure Reynolds equations (10) and (11), the 
delta equation (12) can be derived as follows: 
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Pressure Reynolds equations 
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III. LOAD AND TRACTION 

The load capacity is one of the important characteristics 
of loaded bearings because it provides an overall 
estimate of the efficiency of the bearings. Hence its 
calculation is very much needed. Integration of the 
pressure across the film thickness gives the load 
component W in the y-direction as   
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The traction force TF, which decreases the efficiency of 
loaded bearings, and is from the integration of shear 
stress  �  over the entire length then one may get 
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IV. RESULT AND DISCUSSION 

The bearing characteristics, which specify the 
lubrication behavior of the system, depend on the 
various parameters ‘n’ (flow behavior index), Ū (Rolling 
ratio parameter). 'n’ is assumed to take the values 1.15, 
1.0, 0.545, 0.4 and Ū is considered to take the values 
1.0, 1.2, 1.4. For the numerical calculation, the following 
representative values have been used:  
U2 = 400cm/s, h0 = 4 × 10

-4
 cm, α = 1.6 × 10-9 dyne

-1
 

cm
2
, R = 3cm. 

Velocity profile: Numerically computed velocity u

verses y of the lubricant at various locations of the fluid 

in the gap between the surfaces are depicted in Figs. (2-
4) respectively for the regions before, after, and at the 
point of maximum pressure. The Fig. (2) represents the 
velocity of the fluid before the point of maximum 
pressure, i.e. they are like parabolas with vertices 
downward in the regions before the point of maximum 
pressure.  Fig. (3) shows that the velocity of the fluid 
after point of maximum pressure. It can be seen from 
Fig. (4) that the fluid velocity at the point of maximum 
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pressure increases linearly as y  increases. This is in 

good agreement with the previous findings of Revathi et 
al., [12]. 

 

Fig. 2. Velocity at various values of x. 

 

Fig. 3. Velocity at various values of x. 

 

Fig. 4. Velocity at point of maximum pressure. 

 
Pressure Distribution: The numerically computed 

pressure p  distributions for different values of Ū and ‘n’ 

are presented in the Figs. (5) and Fig. (6) respectively. It 

can be observed from the Fig. (5) that the pressure p  

increases for fixed value of ‘n=1.15’ as Ū  increases 
from 1.0 to 1.4. The same trend can be observed in 
previous findings of [10-12]. The pressure distribution 
for Ū =1.2 and for different values of ‘n’ is shown in Fig. 
(6) and can be noticed that pressure increases with ‘n’. 
This implies that the pressure distribution for dilatant 
fluid is greater than that of Newtonian and pseudo-
plastic fluid. This kind of trend is in good agreement with 
previous findings of [10-12]. 

 

 

Fig. 5. Pressure profile for various values of Ū. 

 

Fig. 6. Pressure profile for different values of ‘n’. 

Load and Traction: The dimensionless load W
components for the system under consideration are 
presented in Fig. (7). It can be observed from the figure 
that the load increases with power-law index ‘n’ and also 
increases with rolling ratio parameter Ū. The 
dimensionless traction at both the upper and lower 
surfaces is calculated and presented in the Fig. (8) and 
Fig. (9). The traction forces are increasing with respect 
to both Ū and ‘n’ at the upper surface and this trend can 
be seen in Fig. (8). The traction forces are decreasing 
as Ū increasing at the upper surface and this trend can 
be seen in Fig. (9).  

 

Fig. 7. Load W Profile. 
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Fig. 8.  Traction force at upper surface 

 

Fig. 9. Traction force at lower surface. 

 
Delta profile: The delta is the location of the point 
where velocity gradient is zero. The numerically 
computed delta values are presented in the form of a 
graph in Fig. (10) and it is matching with the rough 
sketch presented in the Fig. (1). It is in good agreement 
with [13]. 

 

Fig. 10. Delta Profile. 

Consistency Profile: The consistency relation for this 
problem is considered as a function of pressure and it is 
computed numerically and presented in the Fig. (11). 
Since the consistency is dependent of pressure in this 
problem, the graph looks like pressure profile.  

 

Fig. 11. Consistency Profile. 

V. CONCLUSIONS 

The problem has been attempted to study the 
hydrodynamic lubrication analysis of rolling and sliding 
line contact by an incompressible Power-law fluids 
under the usual boundary conditions. The pressure 
Reynolds equation and is solved for pressure, load and 
traction forces for various values of the sliding 

parameter U  and the viscosity coefficient. The lubricant 

velocity distributions at different locations of the fluid are 
also discussed. The following facts may be drawn from 
the results obtained here: 
– Velocity of the lubricant at points of maximum 
pressure increases linearly. 
– A notable increase in lubricant pressure is observed 
for different values of rolling ratio Ū 
– The load is found to be increasing with sliding 
parameter Ū and Power-law index ‘n’. 
– Traction forces at the upper surface are increasing 
with Ū and ‘n’. Further, the traction forces at lower 
surface are found to be decreasing as sliding parameter 
Ū increasing. 
– Since consistency is a function of pressure, the curve 
for consistency looks like pressure profile. 
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